Grammars II

See Section 5.2

The derivation of a string produces a parse tree for the string:

Grammar:	Derivat
E => E+T E-T T	E => <u>T</u>
T => T*F T/F F	=> <u>T</u>
F => (E) G	=> <u>F</u>
G => G digit digit	=> (
	-> 2

cion: ΈF *F 3*F => 3*<u>F</u> => 3*(<u>E</u>) $=> 3^{*}(E+T)$ => 3*(<u>T</u>+T) $=> 3^{*}(F+T)$ => 3*(<u>G</u>+T) $=> 3^{*}(4+T)$ $=> 3^{*}(4+\underline{F})$ $=> 3^{*}(4+\underline{G})$ => 3*(4+5)

Parse Tree:

Example 1: Find a grammar for $\{0^n1^n | n \ge 0\}$ This is one of the languages we showed isn't regular.

S => 0 S 1 | ε

Example 2: Fina a grammar for $\{0^{n}2^{m}1^{n} | n, m \ge 0\}$ s => 0 S 1 | T T => 2 T | ϵ

Example 3: Find a grammar for {ww^{rev} | w \in (0+1)* } (even-length palindromes) S => 0 S 0 | 1 S 1 | ϵ

Example 4: Find a grammar for the language of all palindromes of 0's and 1's S => 0 S 0 | 1 S 1 | 0 | 1 | ϵ

Note that we can reproduce the string being parsed with a left-toright traversal of the leaves of the parse tree:

Consider the DFA

Here is a grammar for the language this accepts: $S \Rightarrow T \mid 0U$ $T \Rightarrow 0T \mid 1U$ $U \Rightarrow 0S \mid \varepsilon$

S => 1T | 0U T => 0T | 1U U => 0S | ε

Here is a derivation of 00101: $S \Rightarrow 0\underline{U}$ $\Rightarrow 00\underline{S}$ $\Rightarrow 001\underline{T}$ $\Rightarrow 0010\underline{T}$ $\Rightarrow 00101\underline{U}$ $\Rightarrow 00101$ Definition: A grammar that has only rules of the forms

- X => a Y
- X => a

is called a *regular grammar*.

For example, here is a regular grammar: S => 0S | 1T | 0 T => 0T | 1S | 1

A typical derivation is S => 0S=>00S=>001T=>0010T=>00101

Theorem: The language defined by a regular grammar is regular. **Proof:** Given a regular grammar, build an NFA from it. The states of the NFA are the non-terminal symbols of the grammar, plus an extra final state called "Accept". If X=>aY is a rule in the grammar add a transition in the NFA $\delta(X,a) = Y$. If X=>a is a grammar rule make a transition $\delta(X,a)=Accept$.

Every step except the last of a derivation of a string in the regular grammar has the form $S \stackrel{*}{\Rightarrow} \alpha X$. An easy induction shows that $S \stackrel{*}{\Rightarrow} \alpha X$ if and only if string α takes the NFA from state S to state X. The grammar derives string w if and only if w = α a and there is a non-terminal symbol X with $S \stackrel{*}{\Rightarrow} \alpha X$ and X => a, which says the string α a will take the NFA to state Accept. This says the grammar derives string w if and only if the NFA accepts the string w. For example, start with the regular grammar

This gives the NFA

Both the grammar and the NFA describe strings with an even number of 1's.

Theorem: Every regular language has a regular grammar. **Proof**: Start with DFA that describes a regular language. We will build a grammar for the language. The non-terminal symbols of the grammar will be the names of the states of the DFA. If the DFA has transition $\delta(X,a) = Y$, add the grammar rule X => aY. If the DFA has transition $\delta(X,a) = Y$ and Y is a final state, also add the grammar rule X => a. A string w = αa is accepted by the DFA if and only if S $\Rightarrow \alpha X$ and X=>a, so w is accepted by the DFA if and only if $S \Rightarrow w$.

Since regular grammars are context-free, we see that all regular languages are context free. But the family of context-free languages includes many languages that are not regular, including

 $\{0^{n}1^{n} \mid n \ge 0\}$ and $\{ww^{rev} \mid w \in (0+1)^{*}\}$