Grammars II

See Section 5.2

The derivation of a string produces a parse tree for the string:

Grammar:

$$
\begin{aligned}
& E=>E+T|E-T| T \\
& T=>T^{*} F|T / F| F \\
& F=>(E) \mid G \\
& G=>G \operatorname{digit} \mid \operatorname{digit}
\end{aligned}
$$

Derivation:

$$
\begin{aligned}
E & =>\underline{I} \\
& =>\underline{T}^{*} F \\
& =>\underline{F}^{*} * \\
& =>\underline{G} * F \\
& =>3^{*} \underline{F} \\
& =>3^{*}(\underline{E}) \\
& =>3^{*}(\underline{E}+T) \\
& =>3^{*}(\underline{T}+T) \\
& =>3^{*}(\underline{F}+T) \\
& =>3^{*}(\underline{G}+T) \\
& =>3^{*}(4+T) \\
& =>3^{*}(4+\underline{F}) \\
& =>3^{*}(4+\underline{G}) \\
& =>3^{*}(4+5)
\end{aligned}
$$

Parse Tree:

Example 1: Find a grammar for $\left\{0^{n} 1^{n} \mid n>=0\right\}$ This is one of the languages we showed isn't regular.

$$
S=>0 \mathrm{~S} 1 \mid \varepsilon
$$

Example 2: Fina a grammar for $\left\{0^{n} 2^{m} 1^{n} \mid n, m>=0\right\}$

$$
\begin{aligned}
& s=>0 S 1 \mid T \\
& T=>2 T \mid \varepsilon
\end{aligned}
$$

Example 3: Find a grammar for $\left\{w^{\text {rev }} \mid w \in(0+1)^{*}\right\}$ (even-length palindromes)

$$
S=>0 S 0|1 S 1| \varepsilon
$$

Example 4: Find a grammar for the language of all palindromes of 0's and 1's

$$
S=>0 S 0|1 S 1| 0|1| \varepsilon
$$

Note that we can reproduce the string being parsed with a left-toright traversal of the leaves of the parse tree:

$$
3 *(4+5)
$$

Regular Grammars

Consider the DFA

Here is a grammar for the language this accepts:

$$
\begin{aligned}
& S=>1 T \mid O U \\
& T=>0 T \mid 1 U \\
& U=>O S \mid \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& S=>1 T \mid O U \\
& T=>0 T \mid 1 U \\
& U=>O S \mid \varepsilon
\end{aligned}
$$

Here is a derivation of 00101:

$$
\begin{aligned}
S & =>0 \underline{U} \\
& =>00 \underline{S} \\
& =>001 \underline{T} \\
& =>0010 \underline{T} \\
& =>00101 \underline{U} \\
& =>00101
\end{aligned}
$$

Definition: A grammar that has only rules of the forms

- $X=>a Y$
- $X=>a$
is called a regular grammar.
For example, here is a regular grammar:

$$
\begin{aligned}
& S=>0 S|1 T| 0 \\
& T=>0 T|1 S| 1
\end{aligned}
$$

A typical derivation is $S=>0 S=>00 S=>001 T=>0010 T=>00101$

Theorem: The language defined by a regular grammar is regular. Proof: Given a regular grammar, build an NFA from it. The states of the NFA are the non-terminal symbols of the grammar, plus an extra final state called "Accept". If $\mathrm{X}=>\mathrm{a} \mathrm{Y}$ is a rule in the grammar add a transition in the NFA $\delta(\mathrm{X}, \mathrm{a})=\mathrm{Y}$. If $X=>a$ is a grammar rule make a transition $\delta(X, a)=$ Accept.

Every step except the last of a derivation of a string in the regular grammar has the form $S \stackrel{*}{\Rightarrow} \alpha X$. An easy induction shows that $S \stackrel{*}{\Rightarrow} \alpha X$ if and only if string α takes the NFA from state S to state X. The grammar derives string w if and only if $w=\alpha a$ and there is a non-terminal symbol X with $S \Rightarrow \alpha X$ and $X=>a$, which says the string α a will take the NFA to state Accept. This says the grammar derives string w if and only if the NFA accepts the string w.

For example, start with the regular grammar

$$
\begin{aligned}
& S=>0 S|1 T| 0 \\
& T=>0 T|1 S| 1
\end{aligned}
$$

This gives the NFA

Both the grammar and the NFA describe strings with an even number of 1's.

Theorem: Every regular language has a regular grammar.
Proof: Start with DFA that describes a regular language. We will build a grammar for the language. The non-terminal symbols of the grammar will be the names of the states of the DFA. If the DFA has transition $\delta(\mathrm{X}, \mathrm{a})=\mathrm{Y}$, add the grammar rule $\mathrm{X}=>\mathrm{aY}$. If the DFA has transition $\delta(X, a)=Y$ and Y is a final state, also add the grammar rule $X=>$ a. A string $w=\alpha a$ is accepted by the DFA if and only if $S \stackrel{*}{\Rightarrow} \alpha X$ and $X=>a$, so w is accepted by the DFA if and only if $S \stackrel{*}{\Rightarrow} w$.

Since regular grammars are context-free, we see that all regular languages are context free. But the family of context-free languages includes many languages that are not regular, including

$$
\left\{0^{n} 1^{n} \mid n>=0\right\} \text { and }\left\{w w^{\text {rev }} \mid w \in(0+1)^{*}\right\}
$$

