
Grammars II
See Section 5.2

The derivation of a string produces a parse tree for the string:

Derivation:
E => T

=> T*F
=> F*F
=> G*F
=> 3*F
=> 3*(E)
=> 3*(E+T)
=> 3*(T+T)
=> 3*(F+T)
=> 3*(G+T)
=> 3*(4+T)
=> 3*(4+F)
=> 3*(4+G)
=> 3*(4+5)

Grammar:
E => E+T | E-T | T
T => T*F | T/F | F
F => (E) | G
G => G digit | digit

E

T

T * F

F

G

3

(E)

E + T

T

F

G

4

F

G

5

Parse Tree:

Example 1: Find a grammar for {0n1n | n>= 0} This is one of the languages we
showed isn't regular.

S => 0 S 1 | e

Example 2: Fina a grammar for {0n2m1n| n, m >= 0}
s => 0 S 1 | T
T => 2 T | e

Example 3: Find a grammar for {wwrev | w ∈ (0+1)* } (even-length palindromes)
S => 0 S 0 | 1 S 1 | e

Example 4: Find a grammar for the language of all palindromes of 0's and 1's
S => 0 S 0 | 1 S 1 | 0 | 1| e

Note that we can reproduce the string being parsed with a left-to-
right traversal of the leaves of the parse tree:

E

T

T * F

F

G

3

(E)

E + T

T

F

G

4

F

G

5

3*(4+5)

Regular Grammars

Consider the DFA S
T

U

1

0

0

0

1

Here is a grammar for the language this accepts:
S => 1T | 0U
T => 0T | 1U
U => 0S | e

S
T

U

1

0

0

0

1

S => 1T | 0U
T => 0T | 1U
U => 0S | e

Here is a derivation of 00101:
S => 0U

=> 00S
=> 001T
=> 0010T
=> 00101U
=> 00101

Definition: A grammar that has only rules of the forms
• X => a Y
• X => a

is called a regular grammar.

For example, here is a regular grammar:
S => 0S | 1T | 0
T => 0T | 1S | 1

A typical derivation is S => 0S=>00S=>001T=>0010T=>00101

Theorem: The language defined by a regular grammar is regular.
Proof: Given a regular grammar, build an NFA from it. The states of the NFA
are the non-terminal symbols of the grammar, plus an extra final state called
"Accept". If X=>aY is a rule in the grammar add a transition in the NFA d(X,a) =Y.
If X=>a is a grammar rule make a transition d(X,a)=Accept.

Every step except the last of a derivation of a string in the regular grammar has

the form S ֜
∗
aX. An easy induction shows that S ֜

∗
aX if and only if string a

takes the NFA from state S to state X. The grammar derives string w if and only

if w = aa and there is a non-terminal symbol X with S ֜
∗
aX and X => a, which

says the string aa will take the NFA to state Accept. This says the grammar
derives string w if and only if the NFA accepts the string w.

For example, start with the regular grammar
S => 0S | 1T | 0
T => 0T | 1S | 1

This gives the NFA

S T

Accept

0 0

1

1

10

Both the grammar and the NFA describe strings with an even number
of 1's.

Theorem: Every regular language has a regular grammar.
Proof: Start with DFA that describes a regular language. We will
build a grammar for the language. The non-terminal symbols of the
grammar will be the names of the states of the DFA. If the DFA has
transition d(X,a) =Y, add the grammar rule X => aY. If the DFA has
transition d(X,a) =Y and Y is a final state, also add the grammar rule

X => a. A string w = aa is accepted by the DFA if and only if S ֜
∗
aX

and X=>a, so w is accepted by the DFA if and only if S ֜
∗
w.

Since regular grammars are context-free, we see that all regular
languages are context free. But the family of context-free languages
includes many languages that are not regular, including

{0n1n | n >= 0} and {wwrev | w ∈ (0+1)*}

